:THERTLETE72

The most important and simple rule to financial success.

How are Albert Einstein and the Rule of 72 related?

Albert Einstein

$\mathrm{T}=\mathrm{P}(\mathrm{I}+\mathrm{I} / \mathrm{N})^{\mathrm{YN}}$

Credited for discovering the mathematical equation for compounding interest

*THERULE TET2

How long it will take for money to double using compounding interest

$$
\mathrm{T}=\mathrm{P}(\mathrm{I}+\mathrm{I} / \mathrm{N})^{\mathrm{YN}}
$$

The interest rate an investment must earn to double in a time period

How many times money will double in a specified time period

* Things to know about the Rule of 72

It's only an
approximation

Assumes the

 interest rate stays constantDoes not allow for additional payments to original amount

Does not account for taxes

Financial Risk Pyramid

*Doug's

Certificate of Deposit

Doug invested \$2,500
into a Certificate of Deposit earning a 4% interest rate. How long will it take Doug' s investment to double?

○ Invested \$2,500
○ Interest Rate is 4\%
$72=18$ years to double investment
4\%

* Another Example

The average stock market return since 1926 has been 11\%
$72=6.5$ years to double investment
11\%

Therefore, historically, every 6.5 years investments in the stock market have doubled

Financial Risk Pyramid

A Stock Investment Example

*An investment of \$5,000 made today, with a return of 5% will take how many years to double?
$\frac{72}{5.5 \%}=$ I3.I years to double investment
*Value of the investment in 13.1 years $=\$ 10,000$

* Can the Rule be applied to

debt?

YES

*It can show how fast a debt can double

*It can show the impact of interest rates on debt

* Jessica's Credit Card Debt

* Jessica has a \$2,200 balance on her credit card with an 18% interest rate.
* If Jessica chooses to not make any payments and does not receive late charges, how long will it take for her balance to double?

\$2,200 balance on credit card 18\% interest rate

$72=4$ years to double debt
18\%

*Sylvia's Debt

* $\$ 2,200$ balance on credit card

* 22\% interest rate

$72=3.27$ years to double debt
22\%

*Jacob's Car

* Jacob currently has $\$ 5,000$ that he wants to invest in a car after he graduates in 4 years. What interest rate will he need to double his money?

○ \$5,000 to invest
○ Wants investment to double in 4 years

$$
72=18 \% \text { interest rate }
$$

4 years

*Rhonda's Treasury Note

Rhonda is 22 years old and would like to invest $\$ 2,500$ into a U.S. Treasury Note earning 3.25% interest. How many times will Rhonda's investment double before she withdraws it at age 66 1/2?

$72=22.2$ years	Age	Investment
3.25% to double investment	22	$\$ 2,500$
	44.2	$\$ 5,000$
	66.4	$\$ 10,000$

*Seth's Investment

- $\mathbf{2}, 500$ invested at age 18

○ 5% interest
○ How many times will investment double by age 62?

$72=14.4$ years

5\% to double investment

Age	Investment
18	$\$ 2,500$
32.4	$\$ 5,000$
46.8	$\$ 10,000$
61.2	$\$ 20,000$

A person can choose to invest into two types of accounts:

Taxed Account - taxes

 are paid on money before it is invested
Tax Deferred Account -

 taxes are not paid until the individual withdraws the money from the investment
*Taxes Example

* George is in the 33\% tax bracket. He would like to invest $\$ 100,000$, and is comparing two accounts that have a 6\% interest rate.
\#1 An account that uses money on which George has already paid tax.

\#2 An account that is tax-deferred until he withdraws the money.

Which account should George choose?

* Effects of taxes

Taxed Account Earning 4\% after taxes

$\frac{72}{4 \%}=$| 18 years |
| :--- |
| to double investment |

Tax Deferred Account

$\frac{72}{6 \%}=$	12 years
	to double investment

Years	Taxable	Tax Deferred
12		$\$ 200,000$
18	$\$ 200,000$	
24		$\$ 400,000$
36	$\$ 400,000$	$\$ 800,000$

* The Rule of 72

How long it will take for money to double using compounding interest

The interest rate an investment must earn to double in a time period

$$
T=P(1+I / N)^{Y N}
$$

* Things to know about the Rule of 72

It's only an approximation

Assumes the

 interest rate stays constantDoes not allow for additional payments to original amount

Does not account for taxes

*Any questions?

